由三大板块组成:
一、储能装置系统
储能设备是储能消防系统的核心部分,其主要功能是存储能量并提供消防设备所需的电力。储能系统通常采用锂离子电池,其能量密度高,并具有无需维护、低自放电率和长寿命等优点。在设计储能装置系统时,需要进行详尽的负载预测和消防设备功率需求分析,以保证储能设备的能够满足实际需求,同时需要配置适当的充放电保护系统,有效防止储能器件过充、过放等问题,从而确保整个系统的可靠性和安全性。
二、控制保护系统
控制保护系统是储能消防系统中的重要组成部分之一,主要负责监控储能装置的状态和输出电力的质量。通过实时检测系统中各个组件的电压、电流、电荷状态、温度等参数,确保系统的工作状态稳固,维持储能设备的安全运行和可靠输出。另外,控制保护系统还需要配备适当的安全保护机制,如过流保护、过温保护、过压保护等,以保障系统运行时不会因某些异常情况而产生安全隐患。
三、响应自动化系
响应自动化系统也被称为能量控制系统,主要负责消防设备的自动化控制和储能装置的自适应调节。一般来说,响应自动化系统需要具备预警功能,可以实时感知火灾发生并启动消防设备,防止火势蔓延。此外,响应自动化系统还需要配有能够智能调节电压、电流的控制器,能够根据消防设备使用情况灵活分配电力,使整个系统能够在最优运行状态下工作。
综上所述,储能消防系统的关键在于储能装置系统、控制保护系统和响应自动化系统。这些系统是在保障储能消防系统高效、可靠运行,满足消防设备实际需求和维持系统安全稳固性方面不可或缺的。在储能消防系统的设计、建设和运行过程中,需要深入研究这些系统的特性和效能,不断创新和完善技术,为提高消防安全水平做出更大的贡献。作为专业的消防设备制造商,徐州联安消防科技工程有限公司一直致力于研发更先进的储能消防系统,为用户提供更优质、更安全、更可靠的消防解决方案。
1. 储能电池系统:这是储能集装箱系统的核心部分,负责存储电能,可以在需要时释放电能。
2. 监控系统:监控系统对整个储能集装箱系统进行实时监控,确保系统的安全运行,同时对电池的充放电状态、温度、电压等参数进行实时监测。
3. 电池管理单元:电池管理单元负责管理电池的各项参数,保证电池在最佳工作状态下运行,延长电池的使用寿命。
4. 专用消防系统:由于电池系统可能存在火灾风险,因此储能集装箱系统配备了专用消防系统,以应对可能出现的火灾情况。
5. 专用空调:为了保证储能系统的稳固运行,系统内部配备了专用空调,维持恒定的温度环境。
6. 储能变流器:储能变流器负责将电池储存的直流电转换为交流电,以供外部使用。
7. 隔离变压器:隔离变压器用于提高系统的安全性,隔离变压器可以将系统与外部电网隔离,减少故障风险。
以上七部分构成了储能集装箱系统,它们集成在一个集装箱内,方便运输和安装,广泛应用于电力系统的调峰、调频、备用等领域。
储能集装箱消防系统是保障储能设备安全的重要环节。市场上常见三种系统设计,每种设计针对不同情况,以提供最有效的灭火解决方案。
全淹没灭火系统主要采用气体灭火,如七氟丙烷、超细干粉、二氧化碳或全氟己酮。七氟丙烷和全氟己酮在密闭空间内灭火效果显著,不易复燃。超细干粉与二氧化碳虽能迅速灭火,但二氧化碳灭火后可能复燃。气溶胶的使用尚未有明确实验结果。全氟己酮在全淹没灭火中使用较少,目前尚未广泛认证,但在PACK级灭火中应用较多。此系统还配备探测系统,包括温度、烟雾、可燃气体、一氧化碳、氢气等多种传感器,用于感知火情并启动灭火装置。探测系统通常包含自动启动、电气手动启动和机械应急启动三种方式。施工时需注意细节,包括泄压口密封、紧急启停密封、声光和放气灯防雨等。
气体灭火系统结合喷淋系统的设计,既考虑了初期火灾的抑制,又在水资源充足时能有效扑灭火灾,是较为经济且全面的解决方案。在户外偏远地区或无水资源的情况下,应制定应急预案,如快速拆卸或移出起火电池。科学设计喷淋系统至关重要,确保配置合理,避免错误配置导致的安全隐患。
PACK级灭火系统通过复合探测器、管路电磁阀和灭火装置点喷技术,对每个电池包进行有效监测与抑制扑灭。此系统成本相对较高,适用于危险系数较高的储能场景。
近年来,我国新型电储能技术快速发展,安全问题成为关键。储能电站建设中,安全应被视为首要考虑因素,确保安全支出到位。全生命周期内,从设计、施工到运维,均需具备完整、系统的消防解决方案,以应对不同类型的储能事故隐患,设计相应的灭火解决方案及应急预案。通过综合考虑以上三种系统设计,储能集装箱消防系统能有效保障储能设备的安全运行。
1. 储能电站的应用范围广泛,涉及新能源汽车、孤立微网、厂网侧、用户侧、电网侧等多个领域。
2. 随着电池储能技术的成熟,电池组储能逐渐成为储能电站的重要组成部分。然而,储能电站项目的建设和应用中,火灾危险性也逐渐显现。
3. 近10年来,国内外发生了30多起大容量储能电站起火爆炸事故,其中多数采用锂离子电池,部分事故还涉及铅酸电池和钠硫电池,造成了人员伤亡和重大财产损失。
4. 储能电站火灾事故主要包括锂电池的火灾危险性和电气设备的火灾危险性两个方面。
5. 锂电池的热失控和级联热失控是锂电池火灾的主要来源,与电池构造直接相关。电池在滥用情况下,如过热、过度充放电、电池设计缺陷及原材料瑕疵造成的短路等,会导致内部电池材料之间发生化学反应,电解液分解产生大量热和气体,引起热失控。
6. 大型锂电池储能系统中的锂电池模块通过串联形成单个电池组,多个电池组通过并联形成一个大容量储能单元。锂离子电池火灾与普通火灾不同,热失控发生后容易引发周围电池发生连锁燃烧爆炸反应,并且在自燃同时会释放氧气,易出现复燃现象。
7. 电气设备火灾主要由线路漏电、短路、过负荷、老化等导致的局部高温引发电气设备中可燃物着火。
8. 为了应对这些火灾危险性,储能电站消防系统需要针对性设置。全淹没七氟丙烷自动灭火系统是目前市场上使用较多的储能消防系统。
9. 七氟丙烷气体灭火装置包括灭火瓶组、高压软管、灭火剂单向阀、启动瓶组、安全泄压阀、选择阀、压力信号器、喷头、高压管道、高压管件等。
10. 火灾探测预警系统也需针对不同情况配置,针对电气设备舱和电池舱分别采用不同的探测器,如防爆型复合探测器、防爆可燃气体探测器、本安型探测器等。
11. 对于锂离子电池火灾控制在Pack级别也是非常重要的。储能系统中电池火灾发展到一定规模时,应利用探测传感器精准识别电池热失控情况,以实现Pack级火灾安全防控。
12. 然而,将可燃气体探测器布置到每一个Pack内会增加储能系统的成本,因此,可根据火灾类型针对性设计防火方案。
13. 储能电站消防系统需要根据储能设备的不同情况针对性设置方案,并需专业消防公司进行考察、设计,才能保障储能电站的安全。
14. 加强储能电站消防安全管理,对于构建清洁低碳、安全高效的当代能源产业体系,推进我国能源行业供给侧改革、推动能源生产和利用方式变革具有重要战略意义。
15. 实现党中央“力争2030年前实现碳达峰、2060年前实现碳中和”的伟大目标也需要储能电站建设将安全放在第一位。
16. 只有保障储能电站安全的情况下,才有可能进一步推动储能技术的发展。
储能集装箱作为集成化储能系统,内部包含电池柜、BMS、动环监控系统,可选集成储能变流器与能量管理系统。其优势在于简化建设,缩短周期,具备高模块化与便携性。
尽管储能行业蓬勃发展,其消防系统发展滞后。习惯七氟丙烷灭火方式在储能舱火灾中效果不佳,无法充分扑灭明火并持续降温抑制复燃,频发的储能电站火灾事故凸显了消防标准的不足。
我司自2011年起,专注于消防领域研究